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1. Introduction 

Searching for better forecasting models is the fundamental objective in many research 

projects with key theoretical, practical applications. Technological advancements and the rapid 

growth in computing power have led to a significant increase in the number of investigated 

alternatives. Analyzing the absolute performance of a model may be desirable in some 

circumstances, but evaluating relative performance is preferred for obvious reasons. These 

developments imply that the risk of data snooping1 is greater than ever before. Data snooping 

is fast becoming one of the great threats to the advancement of scientific knowledge in the 21st 

century. How should the relative predictive ability of a new model be tested given existing 

alternatives? White (2000) argues that tests must account for the data snooping efforts of others. 

However, considering alternative models that others use is not an established practice in the 

financial economics literature and an investigation into if and how does this influence reported 

results has yet to be performed. 

In this paper, we investigate how choosing an “unrepresentative” set of alternatives, one 

which does not account for the data snooping efforts of others, influences the outcomes of tests 

that evaluate the relative performance of multiple forecasting models. The paper focuses on the 

literature examining models based on technical analysis, technical trading rules (TTRs) because 

the number of alternatives is especially large and difficult to exactly pinpoint; but it is relevant 

for any investigation of the relative performance of multiple forecasting models, regardless of 

the underlying research topic. First, the paper discusses if the sets of models that are typically 

used in the literature are representative or not. Second, a simulation exercise is used to show 

how employing small, unrepresentative sets in seemingly data snooping-free statistical tests 

generates false discoveries. Third, the potential impact of this particular type of data snooping 

                                                           
1 Data snooping refers to the practice of searching for better performing forecasting models on the same data 

samples. This increases the chances of founding and using models that just fit the noise in the original data, are 

lucky, but have little economic significance and perform poorly in out-of-sample applications. 
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bias on test results and conclusions reported in the TTR literature is evaluated in an extended 

empirical investigation. Overall, our results show that trading rule universes that are typically 

used are most likely unrepresentative for what investors and researchers use. Not accounting 

for the data snooping efforts of others biases test outcomes in favor of showing that some TTRs 

have statistically significant predictive ability in financial markets. One direct implication of 

the findings is that positive discoveries of TTR excess performance reported in the literature, 

which are based on tests that use unrepresentative rule universes, should be treated with more 

care. More generally, controlling for the data snooping efforts of others is important for 

obtaining robust results that can withstand the test of time. Also, we argue that evaluating 

relative (excess) performance becomes problematic when representativeness is ambiguous, 

relevant alternatives are not fully observable, such as in the case of tests that evaluate 

forecasting models derived from technical analysis. In this and other similar circumstances, 

evaluating absolute performance may provide more objective results and may have some merit. 

This paper is inspired by the recent discussion in the financial economics literature 

centered on the impact of test misspecification and cherry-picking results on the robustness of 

reported results and associated inferences. For example, Kim and Ji (2015) find that the results 

reported in many surveyed papers become questionable after revised standards for evidence are 

used instead. Also, they observe strong evidence of publication bias in favor of statistically 

significant results. Harvey (2017) and Harvey and Liu (2014) discuss the importance of 

increasing the statistical significance threshold in tests that use widely examined data and 

controlling for data snooping. Harvey (2017) stresses that “with the combination of unreported 

tests, lack of adjustment for multiple tests, and direct as well as indirect p-hacking, many of the 

results being published will fail to hold up in the future.” In this paper, we further investigate 

the extent to which using small, unrepresentative sets in tests of the relative performance of 

multiple forecasting models can be associated with data snooping and biased results. 
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In the literature examining models based on technical analysis (TTRs), a typical test 

defines the set of models, named a “trading rule universe”, simulates trading to measure the 

relative performance of each model and evaluates the statistical and economic significance of 

the results. Such a test is biased when not properly handling the associated multiple hypotheses. 

In his seminal paper, White (2000) introduces the Reality Check (RC) test and solves this issue 

by accounting for the covariance matrix of the excess returns series generated by the different 

models. The RC controls for the family-wise error rate and delivers asymptotically valid p-

values for evaluating the null hypothesis of no excess performance using an empirical 

distribution estimated via bootstrap simulation. Modified versions of the RC test have been 

developed by Hansen (2005), who proposed recentering the test statistic and eliminating poor 

performing rules in order to improve power, or by Romano and Wolf (2005) and Hsu et al. 

(2010), who developed step-versions in order to identify all overperforming rules. Alternative 

tests of relative performance, which are based on Bonferroni bounds and control for the False 

Discovery Rate (FDR), have been proposed by, among others, Benjamini and Hochberg (1995), 

Storey (2002) or Barras et al. (2010). For brevity and also because RC-type tests are more 

frequently used in the literature, our discussion centers on the RC test defined by White (2000), 

while the Superior Predictive Ability (SPA) test proposed by Hansen (2005) is also considered 

in a robustness analysis. We thus leave the discussion of FDR-type tests to subsequent research. 

However, we note that the results of the simulation exercise reported in Section 4 suggest that 

using unrepresentative universes in statistical tests that employ the FDR strategy may also 

influence their outcomes. Tests in the RC class seemingly eliminate data snooping by handling 

the associated multiple hypotheses for the considered fixed set of prediction models. However, 

White (2000) or Sullivan et al. (1999) argue that the characteristics of the bootstrap-generated 

distribution used to evaluate the null depend on the size and diversity of the pre-specified 

universe. Thus, the outcome of RC-type tests should be influenced by the subjective choice that 
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researchers make regarding the composition of the universe. Surprisingly, to the extent of our 

knowledge, a detailed analysis of if and how this happens has not been performed so far. This 

paper sets out to fill in this gap. 

Because of its specific focus, our paper also directly contributes to the literature 

examining the excess performance (returns) obtained by TTRs in financial markets, which is 

one of the most exposed to the risk of data snooping. Put differently, our results have important 

implications for the literature concerned with the crucial theoretical concept of efficient 

financial markets (Fama, 1970). There is a widely accepted view that financial prices/returns 

are not completely random2. However, given existing market frictions and other limitations, 

this does not automatically imply that stock markets are not weak-form efficient and that 

investors are able to earn economic profits (Jensen, 1978; Timmermann and Granger, 2004). 

Park and Irwin (2007) provide a comprehensive review of the early literature examining TTR 

excess performance and find that some favorable evidence exists. For example, 58 out of 92 

“modern” studies conclude in favor of technical trading rules being able to earn statistically and 

economically significant excess returns, this implying that markets are not weak-form efficient 

in an absolute sense. Most results show that TTRs can predict price movements to a certain 

extent and can earn excess returns over the buy-and-hold benchmark model. However, in some 

cases, excess returns disappear after adjusting for trading costs and risk or turn out to be 

statistically insignificant when accounting for data snooping. More recent papers, including 

some that employ RC-type tests, report that the excess performance of TTRs in developed stock 

markets has greatly diminished or even disappeared. Examples include Neuhierl and Schlusche 

(2010), Bajgrowicz and Scaillet (2012), Shynkevich (2012) and Taylor (2014) for the US 

market, Ratner and Leal (1999), Fifield et al. (2005) and Marshall and Cahan (2005) for others. 

Such results imply that markets have become more efficient over time. However, conflicting 

                                                           
2 See Grossman and Stiglitz (1980) for theoretical arguments and Lim and Brooks (2011) for empirical evidence. 
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findings continue to appear, such as in Urquhart et al. (2015), who find that moving average 

trading strategies based on signal anticipation yield superior profits to investors in the US, UK, 

and Japan markets. Also, some authors argue that TTRs remain profitable in emerging stock 

markets, examples including Metghalchi et al. (2009) for Asian markets, Sobreiro et al. (2016) 

for BRICS and other 6 markets in Central and Latin America, Metghalchi et al. (2012) for 

emerging European markets, or Al-Nassar (2014) for stock markets in the Middle-East. Further, 

TTRs have recently been found to earn some kind of economic profits in tests that reexamine 

the foreign exchange market (Coakley et al., 2016; Hsu et al., 2016; Zarrabi et al., 2017), the 

US bond market (Shynkevich, 2016), or the commodity futures market (Han et al., 2016). Are 

TTRs truly capable of earning significant excess returns after being investigated by investors 

and researchers for so many years? Although it is possible that some markets are not efficient, 

or even adaptive (Lo, 2004), recent evidence has revealed that test misspecification, 

methodological limitations and publication bias may play a role in shaping the conclusions in 

the literature. In this paper, we further investigate if using unrepresentative rule universes in 

tests contributes to creating a skewed, more favorable picture of TTR excess performance. 

The remainder of the paper is structured as follows. Section 2 analyzes if trading rule 

universes typically used in the literature are representative or not and presents an alternative 

that should better account for what investors and researchers use. Section 3 discusses the RC 

test. Section 4 presents the results of a simulation exercise that investigates if and how using 

unrepresentative universes biases test results. Section 5 presents an extensive empirical 

investigation that evaluates the potential impact of this particular type of data snooping on the 

results of tests focusing on TTR relative performance. Section 6 concludes. 

2. Trading Rule Universes 

Investment professionals use technical analysis to make investment decisions in 

financial markets (e.g., Taylor and Allen, 1992; Menkhoff, 2010; Scott et al., 2016). Many 
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researchers also evaluate the performance of TTRs (e.g., Park and Irwin, 2007). Even though 

there is no indication on the exact number and type of rules that are used, we know that 

stakeholders routinely mine financial prices data in search of better forecasting models, this 

resulting in a very large set of considered alternatives over time. Thus, we can safely assume 

that the total number of rules in the “true” universe is quite large. 

Table 1. Independent subsets of trading rules in 686k 
No. Name (Symbol)–Technical Analysis Indicator Indicator Type Number of trading rules 

1 Accumulation Swing Index (ASI) momentum 210 

2 Arms Ease of Movement (EMV) momentum 840 
3 Aroon Oscillator (AO) standardized momentum 10,507 

4 Balance of Market Power (BMP) standardized momentum 39,207 

5 Bollinger Oscillator (%b) momentum 12,402 
6 Center of Gravity Oscillator (COG)   momentum 252 

7 Chaikin Money Flow (CMF) standardized money flow 25,258 

8 Chaikin Oscillator (CO) money flow 6,174 
9 Chande Momentum Oscillator (CMO) standardized momentum 27,969 

10 Commodity Channel Index (CCI) momentum 616 

11 Demand Index (DI) standardized money flow 25,258 
12 Detrended Price Oscillator (DPO) momentum 672 

13 Dynamic Momentum Index (DYMOI) standardized momentum 37,584 

14 Filter (F) momentum 51 
15 Inertia Indicator (INI) standardized momentum 22,464 

16 Kase Convergence Divergence (KCD) momentum 43,141 

17 Kase Peak Oscillator (KPO) momentum 8,624 
18 Klinger Volume Oscillator (KVO) money flow 6,174 

19 Know Sure Thing (KST) momentum 5,488 

20 Linear Regression Slope (LRS) momentum 371 
21 Market Volume Impact (MVI) money flow 252 

22 Money Flow Index (MFI) money flow 24,978 

23 Moving Average Convergence Divergence (MACD) momentum 4,704 
24 New Relative Volatility Index (NRVI) standardized momentum 30,331 

25 On Balance Volume (OBV) money flow 210 

26 Plus DM vs. Minus DM crossover (DMI) standardized momentum 441 
27 PI Opinion Oscillator (PI) standardized momentum 7,107 

28 Polarized Fractal Efficiency (PFE) standardized momentum 60,426 

29 Random Walk Index for High prices (RWI) momentum 450 
30 Rate of Change (ROC) momentum 672 

31 Relative Momentum Index (RMI) standardized momentum 48,600 

32 Relative Strength Index (RSI) standardized momentum 10,864 
33 Relative Vigor Index (RVig) standardized momentum 60,426 

34 Relative Volatility Index (RVI) standardized momentum 16,859 
35 Runs Indicator (R) momentum 11 

36 Stochastic Momentum Index (SMI) standardized momentum 33,250 

37 Stochastic Oscillator (%k) standardized momentum 1,769 
38 Stochastic RSI Oscillator (SRSI) standardized momentum 16,859 

39 The Quantitative Candlestick (Qstick) momentum 840 

40 Triple Exponential Smoothing (TRIX) momentum 3,402 
41 True Strength Index (TSI) standardized momentum 60,426 

42 Ultimate Oscillator (UO) standardized momentum 22,842 

43 Vortex Oscillator (VX) standardized momentum 7,114 
44 Williams Variable Accumulation Distribution (WVAD) money flow 210 

Are trading rule universes typically used in the literature representative? We answer this 

question by first constructing a rule universe that should better represent the “true” one used by 

others. Trading rules that researchers typically test–such as filters, moving averages, or the 

MACD and RSI indicators–are incorporated first. This initial selection is supplemented by other 
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trading rules obtained from looking at the practitioner-oriented literature3, keeping in mind their 

popularity, applicability in our context, and distinctiveness. The resulting set of trading rules–

denoted thereafter as 686k–contains a total of 686,304 TTRs and can be divided into 

independent subsets based on the technical analysis indicators used for their construction, as 

presented in Table 1. Appendix A in the supplementary materials provides extensive details 

regarding our choices, the terminology employed, the ways in which specific trading rules are 

constructed, and the qualitative improvements in terms of the diversity that this new universe 

has over the ones previously used in the literature. To the extent of our knowledge, this is by 

far the largest and most representative trading rule universe ever considered. For example, 

Sullivan et al. (1999) use 7,846 TTRs, Zarrabi et al. (2017) use 7,650 TTRs, Neuhierl and 

Schlusche (2010) use 10,256 TTRs, Shynkevich (2012) uses 12,937 TTRs, Hsu et al. (2016) 

use 21,000 TTRs, Shynkevich (2016) uses 27,000 TTRs, and Coakley et al. (2016) use 113,148 

TTRs. Of course, the “true” rule universe is very difficult, if not impossible, to observe; so even 

this construction might still not be representative4. However, as the number and type of TTRs 

are based on what others use and are greatly diversified, the divergence should be significantly 

reduced. 

We test the representativeness assumption by estimating the effective span (defined in 

Sullivan et al., 1999) of the small, independent rule universes contained by 686k and comparing 

them to the span of a rule universe representative for what is used in the literature. We choose 

the universe used by Sullivan et al. (1999)–denoted thereafter as STW–as the benchmark 

                                                           
3 We search publications such as the Journal of Technical Analysis, the International Federation of Technical 

Analysts Journal, or the Technical Analysis of Stocks & Commodities–The Traders’ Magazine. We also examine 

technical analysis books, such as Wilder (1978) or Colby (2002). 
4 Some papers incorporate TTRs derived from various artificial intelligence and computer optimization algorithms 

(e.g., Brabazon el al., 2012). Also, hedge funds and other skilled investors may additionally incorporate more 

sophisticated rules, or may use combinations of rules from different areas, such as fundamental analysis, behavioral 

finance and so on. We implement a conservative approach and disregard such alternatives in order to avoid 

hindsight bias (Timmermann and Granger, 2004) and also because they require more expertise and a higher 

implementation cost, which makes them accessible to only a small fraction of investors. 
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because of its medium-to-large size compared to what is typically used, because of its visibility, 

and also because data on its span are reported by the authors (Figure 1 in Sullivan et al., 1999, 

p. 1660). Similar to STW, the spans of our universes are estimated on daily closing price data 

for the Dow Jones Industrial Average (DJIA) index from 1897 to 1986. 

Figure 1. Effective span of trading rule universes 

  
Panel A. Eigenvalues 1 to 200 Panel B. Size vs. 11th eigenvalue 

NOTE. This figure reports the first 200 eigenvalues of the covariance matrix of excess returns for TTRs in 31 restricted rule 

universes reported in Table 1, alongside the rule universe used by Sullivan et al. (1999), designated as STW. Eigenvalues are 

sorted in descending order. The total number of nonzero eigenvalues represent the effective span of the universe. 

The results are reported in Figure 1 and show that the STW universe is dominated in 

terms of span by 19 of the 31 considered rule universes5, including some that contain fewer 

than 7,846 rules. For example, the rule universe generated using the MACD indicator only has 

4,704 rules, yet its span is on average 2.08 times higher compared to STW6. The universe with 

the largest span is generated by the DYMOI indicator; it contains 37,584 rules and has a span 

that is on average 34.06 times higher compared to STW. In general, the results show that the 

span of the considered universes is positively correlated with their size. Adding prediction 

models to the analysis extracts more information from the data and implies that the additional 

practitioner-oriented TTRs incorporated into 686k to account for the data snooping efforts of 

others retain sufficient orthogonality compared to the ones that have been used in previous 

                                                           
5 The span is not estimated for 13 of the 44 universes because some require traded volume data that is not available 

for the DJIA index throughout the considered sample, while for the others computational demand is too high. 
6 This is computed as the average ratio between the first 200 eigenvalues and proxies the ratio between the total 

number of nonzero eigenvalues assuming similar decays of the eigenvalue series (this is observed in our results). 
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studies. The span of the 686k universe is not estimated but should be much larger compared to 

all of the other smaller universes, which are contained within. Overall, the results show that 

omitted trading rules that are considered by investors and researchers do generate payoffs that 

increase the span of rule universes, this implying that the representativeness assumption fails 

for rule universes typically used in the literature. Section 4 explores if and how this exposes the 

analysis to data snooping risk and biases test results. In preparation, Section 3 introduces the 

RC test and discusses some of its characteristics in the context of evaluating prediction models 

based on technical analysis. 

3. The Reality Check (RC) test 

A technical analysis indicator (denoted x) is a function 𝑓𝑥: ℝ
𝑛𝑥 → ℝ that measures a 

certain characteristic of price movements7. On the other hand, a technical trading rule (TTR) is 

a mathematical statement, based on the values of one or more indicators, used to make 

investment decisions. Evaluating a TTR is equivalent to making a prediction about how prices 

will move in the future over a specified interval, which is typically set to one observation. 

Investors that use TTRs aim to earn statistically significant excess returns by mechanically 

trading the market. A TTR (denoted k) is represented using a “signal function” 𝛿𝑘,𝑡: ℝ
𝑝𝑘 →

{0, 1} that indicates the expected direction of price movements and recommends the appropriate 

market position8. A trading rule universe is a collection of 𝐾 ∈ ℕ∗ technical trading rules. 

                                                           
7 For example, the Moving Average Convergence/Divergence (MACD) indicator measures price momentum and 

is defined as 𝑓𝑀𝐴𝐶𝐷: ℝ
𝑛𝑀𝐴𝐶𝐷 → ℝ, 𝑓𝑀𝐴𝐶𝐷,𝑡(𝑚, 𝑛, 𝑃) = 𝐸𝑀𝐴𝑡(𝑚, 𝑃) − 𝐸𝑀𝐴𝑡(𝑛, 𝑃), where 𝐸𝑀𝐴𝑡(𝑚, 𝑃) denotes 

an exponential moving average of the price series, with smoothing factor 
2

𝑚+1
, computed at time 𝑡 = 1, 𝑇̅̅ ̅̅ ̅. The 

MACD takes 𝑛𝑀𝐴𝐶𝐷 = 3 parameters, the price vector P and the integers m, n representing the length of the 

“lookback window” for the two averages. In practical applications, the price series is omitted from the definition 

and the MACD is considered as having  𝑛𝑀𝐴𝐶𝐷 = 2 parameters. 
8 For example, the trading rule “𝑀𝐴𝐶𝐷_1” can be defined using the signal function  𝛿𝑀𝐴𝐶𝐷_1,𝑡 = 𝟙{𝑀𝐴𝐶𝐷𝑡(12,26,𝑃)>0}, 

where 𝟙{∙} represents the indicator function. A value of 1 predicts that prices will rise, while 0 that they won’t. 

Thus, this rule instructs the investor to go long when the MACD(12,26) takes positive values and to stay out of 

the market otherwise. Trading rules can be extended to incorporate short positions (in this case, the signal function 

will be able to take an additional value: 𝛿𝑘,𝑡: ℝ
𝑝𝑘 → {−1, 0, 1}), a flexible money management strategy that can 

partially open/close positions (𝛿𝑘,𝑡: ℝ
𝑝𝑘 → [−1, 1]), or margin trading (𝛿𝑘,𝑡: ℝ

𝑝𝑘 → [−𝐿, 𝐿], where 𝐿 is the 

leverage defined as the inverse of the margin requirement). 
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The Reality Check test evaluates the null hypothesis that the best performing TTR in a 

universe has no superiority over the benchmark, i.e. that its average excess return is not positive 

and statistically significant. It does so by considering the associated multiple hypotheses and 

controlling for the Family-wise Error Rate. The test first computes the loss function associated 

with each TTR by multiplying its signal function to the market log-return (𝜁𝑡): 

 𝐿(𝜁𝑡 ,  𝛿𝑘,𝑡−1) =  − 𝛿𝑘,𝑡−1𝜁𝑡 , 𝑡 = 1, 𝑇̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (1) 

Using t–1 for the signal function eliminates contemporaneous trading and controls for 

the look-ahead bias. Considering the buy-and-hold rule as the benchmark (𝛿0,𝑡 = 1, 𝑡 = 1, 𝑇̅̅ ̅̅ ) 

and a sample length of T observations, the excess return series (𝑑𝑘,𝑡) and the average excess 

return (𝑑𝑘) for each TTR are then calculated: 

 𝑑𝑘,𝑡 =  𝐿(𝜁𝑡,  𝛿0,𝑡−1)  −  𝐿(𝜁𝑡,  𝛿𝑘,𝑡−1), 𝑡 = 1, 𝑇̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (2) 

 

𝑑̅𝑘 =
1

𝑇
∑𝑑𝑘,𝑡

𝑇

𝑡=1

, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (3) 

 The test statistic is defined as the maximum average excess return (𝑇𝑛
𝑅𝐶) and is evaluated 

using an empirical distribution (𝑇𝑏,𝑛
𝑅𝐶∗) that is estimated via bootstrap simulation with 𝐵 

iterations. The asymptotically valid p-value (𝑝̂𝑅𝐶) is directly computed to evaluate the null: 

 𝑇𝑛
𝑅𝐶 = max (𝑛1/2𝑑̅1, … , 𝑛

1/2𝑑̅𝐾), 𝑛 = 𝑇 (4) 

 𝑇𝑏,𝑛
𝑅𝐶∗ = max (𝑛1/2𝑑̅𝑏,1

∗ , … , 𝑛1/2𝑑̅𝑏,𝐾
∗ ), 𝑛 = 𝑇, 𝑏 = 1. . 𝐵 (5) 

 

𝑝̂𝑅𝐶 =
1

𝐵
∑𝟙{𝑇𝑏,𝑛

𝑅𝐶∗>𝑇𝑛
𝑅𝐶}

𝐵

𝑏=1

, 𝑛 = 𝑇 (6) 

In its original specification, the RC test does not account for transaction costs. One way 

to consider them would be to compute the ex-post break-even cost for the best TTR in the 

universe and to compare it with actual market costs, such as in Metghalchi et al. (2012). 

However, this approach can bias the test in favor of TTRs that have higher cost-free 

performance, but possibly lower cost-adjusted performance. To correct for this potential 
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problem, we use an adjusted specification that directly incorporates trading costs into the loss 

function: 

 𝐿(𝜁𝑡 ,  𝛿𝑘,𝑡−1) =  𝑐𝑘,𝑡 −  𝛿𝑘,𝑡−1𝜁𝑡, 𝑡 = 1, 𝑇̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (7) 

Eq. (7) is used instead of eq. (1) and also enables the incorporation of liquidity cost into 

the analysis, which is often overlooked, even though it can potentially bias results in favor of 

showing TTR excess performance more often. The trading cost incurred by rule k at time t is: 

 𝑐𝑘,𝑡 = 𝟙{𝛿𝑘,𝑡−1≠𝛿𝑘,𝑡−2}(0.5% + 𝑙𝑡), 𝑡 = 1, 𝑇̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (8) 

The cost is positive when a trade is executed (if the value of the signal function changes) 

and zero otherwise. When a trade occurs, a fixed broker fee of 0.5% is added to the liquidity 

cost (𝑙𝑡), which is defined based on the daily price range: 

 

𝑙𝑡 =

{
 

 ln (
𝐻𝑡
𝐶𝑡
) , 𝛿𝑘,𝑡−1 > 0

ln (
𝐶𝑡
𝐿𝑡
) , 𝛿𝑘,𝑡−1 = 0

, 𝑡 = 1, 𝑇̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (9) 

Adjusting for the liquidity cost in this way is equivalent to simulating trading at the least 

favorable prices of the day: buy trades are executed at the maximum price and sell trades are 

executed at the minimum price. This definition may overestimate the actual liquidity costs 

incurred by traders, but it is should additionally incorporate the price impact cost, which may 

be important especially in low liquid markets. 

The critical step when performing the RC test consists in estimating the empirical 

distribution of excess returns using eq. (5). As a bootstrap simulation is used, the empirical 

distribution estimated to evaluate the null hypothesis asymptotically converges to the 

distribution of the test statistic. However, its characteristics depend on the choices made 

regarding the data sample and trading rule universe, which can be considered two sources of 

risk for the analysis. The risk associated with the choice of data is related to the number of 

observations and to the ergodicity of the underlying data generating process. Both are 
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exogenous to the researcher but may be controlled by either extending the sample to increase 

power or, if the process is not ergodic, by employing structural break tests and then performing 

the test on subsamples for which the process is stable. On the other hand, the size and diversity 

of the trading rule universe are fully controlled by the researcher and improperly specifying 

them may introduce data snooping bias in the analysis. Section 4 discusses if and how this 

happens. 

4. Unrepresentative universes and data snooping: a simulation exercise 

In this section, we test the hypothesis that restricting the size and diversity of trading 

rule universes increases the number of false discoveries, i.e. that data snooping bias occurs 

when the relative performance of forecasting models is tested using unrepresentative universes. 

The analysis centers on estimating the number of false discoveries of RC tests performed for 

trading rule universes of varying sizes, on simulated random data on which TTRs should have 

no superior predictive ability. The 686k universe defined in Section 3 is considered as the 

benchmark. Data snooping bias can thus be estimated by the change in false discovery rates 

between tests that employ small, restricted universes and tests that employ the benchmark.

 Six random generated data sets are constructed and used, each based on a discretized 

zero-drift Geometric Brownian Motion process, assuming different volatility parameters: 𝜎 ∈

{0.15; 0.20; 0.25; 0.30; 0.35; 0.40}. Each data set has 4,000 years of price and volume data, 

each year consisting of roughly 𝑛 = 260 observations (days). Given an initial fixed price of 

𝐶0 = 1,000, the next day’s closing price is 𝐶𝑡 = 𝐶𝑡−1𝑒
𝜎𝜖𝑡√𝜏, the daily price range is 𝑅𝑡 =

𝜎𝐶𝑡𝜖𝑡
′√𝜏, the high (maximum) price is 𝐻𝑡 = 𝐶𝑡 + 𝑢𝑡𝑅𝑡, the low (minimum) price is 𝐿𝑡 = 𝐶𝑡 −

(1 − 𝑢𝑡)𝑅𝑡 and the opening price is 𝑂𝑡 = 𝐿𝑡 + (𝐻𝑡 − 𝐿𝑡)𝑢𝑡
′ , where 𝜖𝑡 and 𝜖𝑡

′  are independently 

drawn from a standard normal distribution, 𝑢𝑡 and 𝑢𝑡
′  are independently drawn from a standard 

uniform distribution and 𝜏 = 𝑛−1. The daily volume is 𝑉𝑡 = 𝑐𝑒𝑥𝑡 , where 𝑐 = 1,000 is fixed and  

𝑥𝑡 is independently drawn from a standard normal distribution. 
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The tests are performed on subsamples of predetermined lengths. We consider 1 month, 

1 quarter, 1 year and 4 years to evaluate potential differences in data snooping bias by sample 

length. For each data set, a total of 4000 distinct tests are performed, 1000 for each type of 

sample length9. Each test has two stages and proceeds as follows. In the first stage, a single-

rule universe is constructed using the “luckiest” rule in 686k, i.e. the rule that generates the 

highest excess return relative to the buy-and-hold benchmark rule. Then, its performance is 

evaluated using the RC test at standard significance levels of 1%, 5%, and 10%. The distribution 

of the RC test statistic is estimated via the stationary bootstrap procedure of Politis and Romano 

(1994), by resampling random blocks of data of average length 𝑞 = 1/√𝑛
4

 (this is based on the 

recommendation of Hall et al., 1995) directly from the excess return series. Resampling blocks 

of data accounts for the autocorrelation in market returns and it is not particularly useful in this 

exercise. However, it is useful for the empirical investigation in Section 5 and it’s also 

employed here for consistency. The number of bootstrap iterations is set to 𝐵 = 1000. 

In the second stage, consecutively larger rule universes are constructed and tested on 

the same sample by adding TTRs to the initial single rule universe, until the entire 686k 

benchmark universe is tested. New TTRs are added in an order consistent with Table A1 from 

Appendix A in the supplementary materials. With each additional rule, the distribution of the 

RC test statistic is re-estimated by resampling an additional 100 times from the excess return 

series of the new rule10. This procedure assures that adding new alternatives does not change 

the actual trading rule that is evaluated by the RC test, which is always the “luckiest” one in 

each sample. Instead, the characteristics of the RC distribution used to evaluate the excess 

performance changes, with the result of potentially influencing test outcomes. Because the 

                                                           
9 When using a sample length of 4 years, all 4,000 years of simulated data are used. When using smaller sample 

lengths, only the first 1000 periods of that type are used. For example, when using 1 quarter as the sample length, 

the first 1,000 quarters from the randomly generated data sets are used, which amount to 250 years in this case. 
10 The number of bootstrap iterations is restricted to 100 in the second stage to reduce computational demand, 

which would otherwise be significant. In a preliminary analysis using a limited sample, 1000 simulations are used 

to verify the robustness of this choice. The results show that the test outcomes do not materially change. 
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random nature of the data series used, no TTRs should have statistically significant predictive 

ability, all RC null hypotheses are true and any null rejection constitutes a false discovery11. 

The aim of the exercise is to estimate the data snooping bias arising in RC tests when reducing 

the size and representativeness of rule universes, controlling for various market conditions and 

testing assumptions. 

Figure 2. False discovery rates (FDR) and the size of the prediction model universes 

  

Sample length: 1 month Sample length: 1 quarter 

  

Sample length: 1 year Sample length: 4 years 

An overview of false discovery rates estimated in the simulation exercise is shown in 

Figure 2 for all rule universes with a size of 2𝑚, 𝑚 = 1,19̅̅ ̅̅ ̅̅ , alongside the benchmark 686k 

universe, which is shown by approximating its size to 220 for illustrative purposes. Numerical 

                                                           
11 As Benjamini and Hochberg (1995) point out, these testing conditions assure that controlling the FWER is 

equivalent to controlling the FDR. Thus, the simulation provides an estimate of data snooping bias in both types 

of tests. 
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results are shown in Appendix B of the supplementary materials for the largest 11 universes of 

these, alongside absolute and relative estimates of the amount of data snooping bias. Several 

interesting findings are worth noting. First, false discoveries significantly increase when the 

size of the trading rule universes decreases. This shows that data snooping bias does occur in 

RC-type tests when rule universes are small, unrepresentative. The result is robust to the choice 

of sample length, the volatility of the data generating process or test significance level. The 

number of false discoveries becomes especially large for universes that contain less than 211 

trading rules but are significantly higher compared to the benchmark 686k universe even for 

the other restricted versions. For example, the average difference in false discovery rates 

between the top-10 largest restricted universes and the benchmark is between 0.39 and 2.62 

percentage points depending on test conditions, which amounts to an increase of 180% to 975% 

in relative terms. This implies that the size and diversity of prediction model universes, 

particularly their representativeness for the data snooping efforts of others, have a very 

important influence on the outcomes of tests that examine the relative performance of multiple 

forecasting models. In particular, using unrepresentative universes biases tests that evaluate 

TTR excess performance in favor of showing a more favorable picture. This highlights the need 

to exercise more caution when analyzing existing positive evidence regarding the economic 

relevance of TTRs. Our results do not invalidate previous findings, but instead, show that 

additional tests are required to investigate their robustness to changes in the size and diversity 

of rule universes by accounting for TTRs that investors and researchers use. 

Second, the effects of using unrepresentative universes in terms of data snooping bias 

are larger when the volatility of the data generating process increases, irrespective of the size 

of the selected universe, subsample length or test significance level. This result shows that 

evaluating the relative performance of forecasting models in more volatile markets reduces the 

relevance of test results. Put differently, it shows that prediction models become “luckier” in 
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markets where volatility is high and implies that tests of their superior predictive ability in these 

conditions are exposed to additional data snooping bias. This triggers additional concerns for 

existing old and new evidence in favor of TTRs being economically relevant in markets 

associated with high volatility and low liquidity, such as small-cap sector stocks (e.g., 

Shynkevich, 2012), emerging stock markets (e.g., Metghalchi et al., 2012), emerging market 

currencies (e.g., Hsu et al., 2016), or markets in which prices experience persistent declines 

(bear markets). Moreover, the results trigger questions regarding findings related to 

“anomalous” asset pricing factors based on technical analysis on portfolios sorted by volatility, 

such as the one proposed by Han et al. (2013). These and other similar results should be treated 

with more care until additional robustness tests that control for the correlation between market 

volatility and data snooping bias are considered. 

Third, false discoveries vary with the length of the data sample. Particularly, they 

increase when the data sample is longer in tests involving universes larger than about 211 

trading rules, while the opposite occurs in tests involving universes that contain fewer rules. 

However, both absolute and relative differences in false discoveries compared to the benchmark 

universe generally increase with the length of the data sample, irrespective of the size of the 

rule universe, the volatility of the data generating process or test significance level. This finding 

shows that the effects of using unrepresentative rule universes in terms of data snooping bias 

get stronger when longer data samples are used. It implies that TTRs are able to fit more of the 

noise in the data, are “luckier”, in extended samples and that the examination of TTR excess 

performance should be complemented by robustness tests on shorter time intervals to control 

for data snooping. 

To show how data snooping bias arises in tests of the relative performance of multiple 

forecasting models, Figure 3 presents how the empirical distribution of the test statistic 

(representing maximum average excess returns), estimated via bootstrap simulation and used 
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to evaluate the RC null hypothesis, changes with the size of the rule universe for the specific 

case of 𝜎 = 0.30 and a sample length of 1 year. Table 2 presents some statistics for the 

empirical distribution, the average p-value for the associated RC test and the proportion of false 

discoveries (FD) obtained at standard significance levels. 

Figure 3. Size of rule universes and the empirical distribution of the RC test statistic 

  

Panel A. Probability density Panel B. Cumulative density 

NOTE. This figure shows the empirical distribution of the RC test statistic (maximum distributions of excess returns) estimated 

in RC tests that use rule universes of size 2𝑚,𝑚 = 1,19̅̅ ̅̅ ̅̅ . The large 686,304 rule universe is distinctively depicted using a red 

line. An intermediate 213 rule universe, comparable in size to what researchers typically use, is depicted using a black line. 

Table 2. The empirical distribution of the test statistic and outcomes of RC tests 
Panel A: Characteristics of maximum distribution of excess returns–1000 tests on simulated random data, σ=0.30, sample size=1 year 

Size of rule universe 20 22 24 26 28 210 212 214 216 218 686,304 
Average 0.0000 0.0111 0.0150 0.0171 0.0201 0.0243 0.0251 0.0280 0.0297 0.0322 0.0343 

Std. Dev. 0.0133 0.0122 0.0118 0.0107 0.0105 0.0119 0.0119 0.0120 0.0118 0.0119 0.0119 

Skewness 0.0723 0.3361 0.3736 0.7294 0.8194 0.6509 0.6459 0.6724 0.6365 0.5931 0.5707 
Excess Kurtosis 0.4059 0.3360 0.4097 0.6126 0.8198 0.4206 0.4297 0.5201 0.5010 0.4181 0.4052 

Jarque-Bera stat. 773.4 2353.4 3025.9 10430.4 13991.5 7797.7 7722.0 8661.3 7798.4 6590.7 6112.7 

Panel B: Results for the associated RC tests–1000 tests on simulated random data, σ=0.30, sample size=1 year 

Size of rule universe 20 22 24 26 28 210 212 214 216 218 686,304 
Average p-value 0.0527 0.1816 0.2607 0.2928 0.3602 0.4688 0.4882 0.5580 0.6040 0.6660 0.7143 

 (0.0019) (0.0051) (0.0068) (0.0075) (0.0085) (0.0090) (0.0090) (0.0093) (0.0093) (0.0091) (0.0088) 
 [27.99] [35.32] [38.38] [38.88] [42.17] [52.33] [54.03] [60.21] [64.76] [73.52] [81.22] 

FD* (1%) 32.6% 10.7% 6.1% 5.7% 4.2% 2.1% 2.0% 1.4% 1.0% 0.5% 0.2% 

FD* (5%) 65.3% 26.2% 18.6% 16.7% 11.4% 6.1% 5.7% 4.2% 3.4% 2.4% 1.6% 
FD* (10%) 83.6% 42.8% 29.6% 26.3% 20.8% 11.3% 10.3% 7.1% 6.0% 4.4% 3.2% 

Note. Standard errors in round parenthesis; t-statistics in square parenthesis. *FD denotes the proportion of Type I errors 

(false discoveries). 

The results show that the maximum excess return distribution used to evaluate the RC 

null hypothesis moves to the right as more TTRs are added to the universe, which is consistent 

with the hypothesis that the additional rules have residual orthogonality (Arellano-Valle and 

Genton, 2008; Hartigan, 2014). This implies that trading rules that are used by practitioners 

should not be considered ex-ante as irrelevant. All distributions are rightly skewed and, thus, 

not normal. The distribution estimated using 686k dominates the other alternatives at every 
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quantile, this showing that it has a significantly higher effective span. Put differently, the 

analysis shows that the distributions shift to the left when TTRs are removed from the 

benchmark universe. This implies that restricting the size of rule universes by not fully 

considering what investors and researchers use decreases the effective span (informativeness) 

of universes, lowers test critical values, generates false discoveries, and biases test results. 

Finally, the simulation exercise shows that false discoveries are not eliminated when the 

extended 686k rule universe is used in tests, even though they are significantly reduced 

compared to when using all other restricted alternatives. For example, when using universes 

that can be considered large for what has been recently used in the literature (such as the ones 

containing between 213 and 217 rules), false discoveries in RC tests occur 63%-600% more 

often, depending on the significance level. Nevertheless, this finding generates some important 

questions for tests of the relative performance of multiple forecasting models. How does the 

“true”, representative universe look like? What would happen if more prediction models would 

be added to the analysis? When should one stop adding alternatives to the universe? Situations 

in which the full set of alternatives used by practitioners and researchers is very difficult, if not 

impossible, to observe, such as in the case of prediction models based on technical analysis, do 

not allow providing satisfactory answers to these questions. This exposes the associated 

statistical tests to ambiguity risk and decreases their scientific relevance. It also makes testing 

for relative model performance subjective, problematic. Because of this, evaluating the absolute 

performance of forecasting models may provide more objective results and may have some 

merit in circumstances where the set of alternatives is unclear.  

5. Data snooping bias and TTR excess performance: an empirical investigation 

In this section, we discuss the results of an empirical exercise designed to evaluate data 

snooping bias in tests that use real stock market data. We consider daily price and volume data 

for individual stocks listed in all markets tracked by Thomson Reuters Eikon on November 14, 
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2013, which have at least 5 listings. In total, there are 81 markets that serve 88 countries. For 

each, we select up to 40 companies that are part of the main market index. For indices that 

contain more companies, only 40 of them are randomly select12. For indices that contain less, 

all companies in the index are selected and the list is supplemented (if possible) using other 

listings in the descending order of their market capitalization. This results in a sample of 2579 

stocks, for which all available historical trading price and volume data are retrieved up to 

November 14, 2013. A summary of the data sample is presented in Appendix C in the 

supplementary materials. 

The empirical exercise first evaluates the excess performance of TTRs that are part of 

the benchmark 686k rule universe using the RC test. The tests are performed on non-

overlapping one-year intervals for all stocks in the sample to enable the investigation of 

temporal variations in data snooping bias. The results in Section 4 show that intermediate 

amounts of data snooping bias are expected when this sample length is used. Subsamples that 

have less than 65 observations are excluded because of insufficient liquidity. To estimate the 

data snooping bias associated with restricting the size and diversity of the rule universes, the 44 

small, unrepresentative universes formed using individual technical analysis indicators are also 

tested and the results are compared to the benchmark. As shown in Section 2, these universes 

have similar characteristics to the ones that are typically employed in the literature, in terms of 

both size and effective span. If data snooping biases the results of tests that use real stock market 

data, then the null rejection rates should be higher in the tests that use the restricted universes 

compared to the ones that use the benchmark. Further, the differences would be an indication 

of the number of false discoveries that is due to data snooping. 

                                                           
12 The companies are ordered by name and then every [N/40] in the list is drawn, where N represents the total 

number of stocks in the index and [x] represents the integer part of x. 
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5.1.Data snooping bias and TTR performance in stock markets around the world 

In total, 34,887 tests are performed for the 686k universe and 1,535,116 tests are 

performed for the rule universes constructed using individual indicators. Table 3 provides a 

summary of the results. In the case of the 686k universe, which is presented in Panel A, 

prediction models derived from technical analysis indicators generate positive cost adjusted 

excess returns in 34,678 tests, which amount to 99.4% of the total. However, when considering 

statistical significance, the RC null hypothesis is rejected only 227 times (0.65% of the total) at 

the 10% level, 96 times (0.27% of the total) at the 5% level, and 14 times (0.04% of the total) 

at the 1% level. The results obtained using the restricted rule universes, which are reported in 

Panel B, show that the RC null hypothesis is rejected 13,525 times (0.88% of the total) at the 

10% level, 5,725 times (0.37% of the total) at the 5% level, and 1,132 times (0.07% of the total) 

at the 1% level. In all cases, the rate of null rejections is about two times higher compared to 

the benchmark results, with the effect being stronger as we decrease the confidence level. Null 

rejections are inflated 2 times at the 1% level, 1.81 times at the 5% level, and 1.8 times at the 

10% level. These results show that data snooping arising from using small, unrepresentative 

universes in RC tests inflates the number of null rejections and, thus, biases results at any 

selected confidence level. Ultimately, it causes a significant amount of false discoveries and 

incorrectly skews conclusions in favor of showing that TTRs display superior predictive ability. 

Results grouped by both stock and year are reported in Panel C of Table 3. This enables 

the analysis of instances when at least one of the 44 tests that use unrepresentative rule universes 

rejects the null hypothesis and evaluates the extreme scenario in which independent researchers 

test different rule universes on the same data sample without controlling for data snooping and 

then make inferences based on a meta-analysis of their results. The RC null hypothesis is 

rejected at least once for 773 stock-years (2.21% of the total) at the 10% level, 337 stock-years 

(0.96% of the total) at the 5% level, and 70 stock-years (0.20% of the total) at the 1% level. 
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This shows that considering the positive results of others without considering their data 

snooping efforts can significantly increase the number of false discoveries. Particularly, the 

evidence in favor of TTRs being economically profitable is inflated 7.93 times at the 1% level, 

6.61 times at the 5% level, and 6.16 times at the 10% level. 

Table 3. Summary statistics of RC test results on real stock market data 
Panel A. Results when using 686k in tests 

Statistic  Value  Percent of total 
i. Number of tests  34,887  100.00% 

ii. Number of tests in which TTRs obtained positive excess returns  34.678  99.40% 

iii. Number of tests with statistically significant positive excess returns (RC test)     
     10% confidence level  227  0.65% 

     5% confidence level  96  0.27% 

     1% confidence level  14  0.04% 
iv. Likelihood of TTRs to repeat positive excess returns┴     

     Conditional on TTR indicator class**  2284  6.54% 

     Conditional on TTR indicator class and strategy***  1572  4.50% 
     Conditional on TTR indicator class, strategy and parameters****  21  0.06% 

v. Likelihood of TTRs to repeat significant performance (10% significance)┼     

     Unconditional*  5  0.01% 
     Conditional on TTR indicator class**  1  0.00% 

     Conditional on TTR indicator class and strategy***  0  0.00% 

     Conditional on TTR indicator class, strategy and parameters****  0  0.00% 

Panel B. Results when using the 44 small, unrepresentative rule universes in tests 
Statistic  Value  Percent of total 

i. Number of valid tests  1,534,970  100.00% 

ii. Number of tests in which TTRs obtained positive excess returns  1,071,904  69.83% 
iii. Number of tests with statistically significant positive excess returns (RC test)     

     10% confidence level  18,132  1.18% 

     5% confidence level  7,867  0.51% 
     1% confidence level  1,242  0.08% 

iv. Likelihood of TTRs to repeat best performance┴     

     Conditional on TTR indicator class, strategy and parameters****  74,502  4.85% 
v. Likelihood of TTRs to repeat significant performance (10% significance)┼     

     Unconditional*  496  0.03% 

     Conditional on TTR indicator class, strategy and parameters****  28  0.00% 

Panel C. Results when testing the 44 restricted rule universes–aggregated at the stock-year level 
Statistic  Value  Percent of total 

i. Number of subsamples  34,887  100.00% 

ii. Number of tests in which TTRs obtained positive excess returns  25,878  74.17% 
iii. Number of tests with statistically significant positive excess returns (RC test)     

     10% confidence level  1,399  4.01% 

     5% confidence level  635  1.82% 
     1% confidence level  111  0.31% 

iv. Likelihood of TTRs to repeat best performance┴     

     Conditional on TTR indicator class**  6,965  19.96% 
     Conditional on TTR indicator class and strategy***  6,866  19.68% 

     Conditional on TTR indicator class, strategy and parameters****  1,555  4.45% 

v. Likelihood of TTRs to repeat significant performance (10% significance)┼     
     Unconditional*  70  0.20% 

     Conditional on TTR indicator class**  7  0.02% 

     Conditional on TTR indicator class and strategy****  7  0.02% 
     Conditional on TTR indicator class, strategy and parameters****  5  0.01% 

NOTE: ┴The number of tests in which TTRs outperform the benchmark in two consecutive years, expressed as a percent of the total number of 

tests. ┼The number of tests in which the null hypothesis of no economic profitability is rejected at the 10% level in two consecutive years, 

expressed as a percent of the total number of tests. *Unconditional–estimated for any TTR in the rule universe. **Conditional on TTR indicator 
class–estimated for TTRs that are based on the same technical analysis indicator (entry/exit strategy, parameter values might vary). 

***Conditional on TTR indicator class and strategy–estimated for TTRs that are based on the same technical analysis indicator and the same 

entry/exit strategy (parameter values might vary). ****Conditional on TTR indicator class, strategy, and parameters– estimated for TTRs that 
are identical in terms of all aspects, including parameter values. 

Results grouped by rule universe are reported in Table 4. For the restricted universes at 

the 10% significance level, rejection rates vary from a minimum of 0.22% to a maximum of 
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2.99%, with a median (mean) of 1.19% (1.18%). This is significantly higher compared to the 

null rejection rate obtained when using the benchmark 686k rule universe, which is 0.65%. This 

pattern replicates when analyzing test results at the 5% and 1% levels: both median and average 

rejection rates are 1.8-2 times higher when the restricted universes are used, even though the 

rules in the benchmark generate positive excess returns more often. The maximum difference 

is recorded for the smallest rule universe, which is the one generated by the Runs Indicator. In 

this case, rejection rates are 4.6-7.3 higher, depending on the significance level. There are 6 

cases in which rejection rates are lower for restricted rule universes compared to the benchmark. 

However, these occur only for the least profitable indicators, which generate positive excess 

returns less than half of the time. This implies that rejection rates are low in tests that use them 

not because of lower data snooping, but because they are not able to consistently predict price 

movements. All other results show that null rejections in tests that use restricted rule universes 

are significantly higher compared to those that use the benchmark. As rule universes that are 

typically used in the literature resemble the restricted ones that are used here, while the 

benchmark 686k universe should be more representative, our results show that data snooping 

has a significant influence on the outcomes of tests that examine the relative performance of 

prediction models in empirical setups. Specifically, data snooping biases test results and skews 

conclusions in favor of the showing that prediction models perform better than they truly do. 

Table 4. Null Rejection Rates aggregated by trading rule universe 
Trading rule universe rPR* NRR, α=0.10 NRR, α=0.05 NRR, α=0.01 
Accumulation Swing Index  26.14% 1.72% 0.66% 0.07% 

Arms Ease of Movement  24.92% 0.78% 0.35% 0.07% 

Aroon Oscillator  88.28% 1.41% 0.65% 0.08% 
Balance of Market Power  83.45% 1.20% 0.49% 0.06% 

Bollinger Oscillator  76.55% 1.36% 0.57% 0.08% 

Center of Gravity Oscillator  44.17% 0.25% 0.08% 0.00% 
Chaikin Money Flow  89.51% 1.21% 0.54% 0.08% 

Chaikin Oscillator  68.94% 1.03% 0.45% 0.07% 

Chande Momentum Oscillator  93.03% 1.29% 0.55% 0.09% 
Commodity Channel Index  46.03% 1.00% 0.41% 0.08% 

Runs  Indicator 33.23% 2.99% 1.42% 0.29% 

Demand Index  87.24% 1.61% 0.74% 0.10% 
Detrended Price Oscillator  81.79% 0.79% 0.35% 0.07% 

Dynamic Momentum Index  96.58% 0.80% 0.32% 0.04% 

Filter  50.70% 2.04% 0.87% 0.16% 
Inertia Indicator  92.64% 1.30% 0.57% 0.08% 

Kase Convergence Divergence  97.91% 1.43% 0.62% 0.08% 

Kase Peak Oscillator  94.66% 0.98% 0.41% 0.06% 
Klinger Volume Oscillator  46.99% 0.22% 0.09% 0.01% 
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Know Sure Thing  80.78% 1.15% 0.47% 0.06% 

Linear Regression Slope  66.59% 1.04% 0.47% 0.06% 

Market Volume Impact  36.71% 0.40% 0.17% 0.03% 

Money Flow Index  87.85% 1.33% 0.57% 0.08% 
Moving Average Convergence Divergence  88.01% 1.02% 0.43% 0.06% 

New Relative Volatility Index  90.47% 1.10% 0.49% 0.05% 

On Balance Volume  8.85% 0.47% 0.22% 0.04% 
Plus DM vs. Minus DM crossover 57.29% 1.63% 0.69% 0.12% 

PI Opinion Oscillator  84.45% 1.29% 0.55% 0.08% 

Polarized Fractal Efficiency  95.40% 1.30% 0.52% 0.08% 
Random Walk Index for High prices  50.43% 0.97% 0.42% 0.08% 

Rate of Change  70.23% 0.83% 0.37% 0.06% 

Relative Momentum Index  92.47% 1.63% 0.72% 0.11% 
Relative Strength Index  84.86% 1.33% 0.55% 0.09% 

Relative Vigor Index  94.78% 1.73% 0.75% 0.11% 

Relative Volatility Index  87.84% 1.13% 0.47% 0.07% 
Stochastic Momentum Index  92.97% 1.77% 0.76% 0.11% 

Stochastic Oscillator  57.48% 0.93% 0.43% 0.07% 

Stochastic RSI Oscillator  57.10% 0.93% 0.38% 0.05% 
The Quantitative Candlestick  20.76% 0.55% 0.23% 0.04% 

Triple Exponential Smoothing  75.74% 1.50% 0.70% 0.08% 

True Strength Index  89.57% 1.64% 0.72% 0.11% 
Ultimate Oscillator  79.49% 1.18% 0.51% 0.07% 

Vortex Oscillator  89.43% 1.19% 0.48% 0.06% 

Williams Variable Accumulation Distribution  10.20% 0.28% 0.11% 0.01% 

SUMMARY RESULTS FOR THE 44 RESTRICTED RULE UNIVERSES 
Minimum 8.85% 0.22% 0.08% 0.00% 

Maximum 97.91% 2.99% 1.42% 0.29% 
Median 81.29% 1.19% 0.49% 0.07% 

Average 69.83% 1.18% 0.51% 0.08% 

Std. Deviation 25.88% 0.51% 0.23% 0.04% 

BENCHMARK RESULTS–686k 99.40% 0.65% 0.27% 0.04% 

NOTE. *rPR is the rate of positive returns, which is defined as the number of tests for which the excess average return of the best rule was 
higher compared to the benchmark, divided by the total number of tests performed. The Null Rejection Rate (NRR) is the number of tests that 

reject the null hypothesis of no economic profitability at the  level, expressed as a percentage of the total number of tests 
performed. 

 

Our results also allow reconsidering the economic profitability of TTRs while 

controlling for the data snooping bias arising from using small, unrepresentative universes. The 

tests that use the extended 686k rule universe show that there are very few instances when TTRs 

have economic relevance and that the null rejection rates (Table 3, Panel A, section iii) are 

similar and even lower compared to the ones reported in Section 4 for tests that employ the 

same universe and same sample length, but random generated data (Table B3 in the 

supplementary materials). This can be observed irrespective of the choice for confidence level 

and volatility parameter and shows that the positive results are within the bounds of 

randomness. Additionally, the likelihood of TTRs replicating significant performance in 

consecutive periods is close to zero (Table 3, Panel A, section v), which shows that even if they 

can generate economic profits from time to time, this is not a robust property. From a theoretical 

perspective, the results show that deviations from market efficiency are rare, insignificant and 

most likely random. This implies that stock markets are efficient at pricing information obtained 
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using technical analysis indicators and supports the weak-form Efficient Market Hypothesis of 

Fama (1970). From a practical perspective, the results show that TTRs do not have any 

economic relevance and are not able to help investors earn significant, systematic excess returns 

from trading on stock markets around the world. 

5.2.Data snooping bias and TTR performance in restricted samples 

 To get a better understanding of the impact of data snooping bias from using small, 

unrepresentative universes in limited data samples, the results are grouped and analyzed by year 

and by stock market. As before, null rejection rates are compared for the 686k universe, the 44 

restricted universes and the restricted universes grouped by both stock and year. 

Table 5. Null Rejection Rates aggregated by year 

Year 

Number 

of tests 

using 

686k 

 686k  Restricted rule universes  Restricted rule universes 

(aggregated by stock-year) 

 NRR, 
=0.10 

NRR, 
=0.05 

NRR, 
=0.01 

 NRR, 
=0.10 

NRR, 
=0.05 

NRR, 
=0.01  

NRR, 
=0.10 

NRR, 
=0.05 

NRR, 
=0.01 

1979 4  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 

1980 18  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 

1981 86  2.33% 1.16% 1.16%  2.69% 2.16% 1.10%  8.13% 3.48% 1.16% 
1982 94  0.00% 0.00% 0.00%  1.28% 0.14% 0.00%  5.31% 2.12% 0.00% 

1983 97  0.00% 0.00% 0.00%  0.39% 0.00% 0.00%  1.03% 0.00% 0.00% 

1984 133  2.26% 0.75% 0.00%  2.90% 1.65% 0.11%  4.51% 3.00% 1.50% 
1985 202  0.50% 0.00% 0.00%  0.50% 0.20% 0.00%  1.48% 0.49% 0.00% 

1986 214  0.00% 0.00% 0.00%  0.10% 0.00% 0.00%  1.40% 0.00% 0.00% 

1987 247  0.81% 0.00% 0.00%  1.02% 0.53% 0.01%  2.83% 0.80% 0.80% 
1988 278  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 

1989 293  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 

1990 343  2.04% 1.17% 0.00%  3.20% 1.68% 0.29%  9.32% 4.37% 1.16% 
1991 406  0.00% 0.00% 0.00%  0.22% 0.00% 0.00%  1.97% 0.00% 0.00% 

1992 461  0.65% 0.22% 0.00%  1.19% 0.45% 0.00%  4.77% 2.16% 0.00% 

1993 560  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.17% 0.00% 0.00% 
1994 660  0.45% 0.15% 0.00%  0.79% 0.22% 0.00%  2.72% 0.75% 0.00% 

1995 759  1.05% 0.13% 0.00%  1.29% 0.30% 0.00%  3.42% 1.71% 0.00% 

1996 907  0.44% 0.44% 0.00%  0.87% 0.48% 0.07%  3.19% 1.32% 0.33% 
1997 997  0.60% 0.10% 0.00%  1.35% 0.46% 0.02%  4.91% 2.00% 0.20% 

1998 1083  1.29% 0.37% 0.00%  1.95% 0.79% 0.04%  6.18% 3.13% 0.46% 

1999 1159  0.26% 0.26% 0.00%  0.42% 0.25% 0.00%  1.63% 0.60% 0.08% 
2000 1265  1.26% 0.79% 0.24%  2.33% 1.14% 0.28%  8.14% 3.55% 0.86% 

2001 1353  0.81% 0.22% 0.00%  1.19% 0.39% 0.04%  3.47% 2.06% 0.22% 
2002 1432  0.28% 0.00% 0.00%  0.94% 0.36% 0.00%  4.60% 1.53% 0.13% 

2003 1535  0.00% 0.00% 0.00%  0.04% 0.00% 0.00%  0.58% 0.13% 0.00% 

2004 1620  0.00% 0.00% 0.00%  0.02% 0.00% 0.00%  0.30% 0.12% 0.06% 

2005 1686  0.00% 0.00% 0.00%  0.05% 0.00% 0.00%  0.83% 0.29% 0.05% 

2006 1784  0.22% 0.00% 0.00%  0.33% 0.08% 0.00%  1.56% 0.56% 0.05% 

2007 1941  0.10% 0.10% 0.05%  0.22% 0.10% 0.06%  1.08% 0.46% 0.10% 
2008 2043  4.89% 2.40% 0.34%  8.53% 4.05% 0.77%  23.25% 12.28% 2.59% 

2009 2102  0.10% 0.00% 0.00%  0.06% 0.00% 0.00%  0.57% 0.14% 0.00% 

2010 2223  0.09% 0.00% 0.00%  0.31% 0.11% 0.00%  1.66% 0.67% 0.08% 
2011 2283  0.74% 0.31% 0.04%  1.97% 0.73% 0.07%  8.49% 3.54% 0.43% 

2012 2308  0.35% 0.04% 0.00%  0.57% 0.23% 0.00%  2.38% 0.95% 0.12% 

2013 2311  0.22% 0.13% 0.04%  0.34% 0.15% 0.05%  1.29% 0.51% 0.08% 

Minimum  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 
Maximum  4.89% 2.40% 1.16%  8.53% 4.05% 1.10%  23.25% 12.28% 2.59% 

Median  0.26% 0.00% 0.00%  0.50% 0.20% 0.00%  1.97% 0.67% 0.06% 

Average  0.62% 0.25% 0.05%  1.06% 0.48% 0.08%  3.46% 1.51% 0.30% 
Std. Deviation  0.99% 0.49% 0.20%  1.58% 0.82% 0.23%  4.35% 2.27% 0.56% 

NOTE. The Null Rejection Rate (NRR) is the number of tests that reject the null hypothesis of no economic profitability at the  

level, expressed as a percentage of the total number of tests performed. 
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The results aggregated by year are reported in Table 5 and show that RC tests that use 

the benchmark 686k rule universe reject the null hypothesis less often compared to tests that 

use restricted rule universes in any time interval. Depending on the year and on the way the 

analysis is conducted, the excess performance of TTRs in tests that use unrepresentative rule 

universes are inflated by up to 24 times. For example, null rejections increase 2.26 times in 

2008 at the 1% level, 5.75 times in 2012 at the 5% level and 3.44 times in 2010 at the 10% 

level. If more researchers conduct independent tests using unrepresentative rule universes and 

then draw conclusions based on a meta-analysis of their results, false discoveries increase by 

975% in 2011 at the 1% level, 2275% in 2012 at the 5% level and 1744% in 2010 at the 10% 

level. Overall, the results show that data snooping biases test results in favor of TTR excess 

performance, irrespective of the period in which the analysis is performed. 

Implications for the discussion regarding market efficiency can be obtained from 

analyzing the results obtained using the 686k universe, which show temporal variations in the 

excess performance of TTRs in our sample. Periods in which prediction models derived from 

technical analysis indicators have low success rates (stock markets are more efficient) relate to 

calm and favorable (positive) market conditions, while periods in which strategies are able to 

earn economically significant excess returns (stock markets are less efficient) relate to periods 

of financial, macroeconomic, social instability. The most successful year for TTRs is by far 

2008, the climax of the most recent financial crisis. About half of all RC null rejections originate 

in this year alone. Other periods of financial market instability rank high, such as the European 

sovereign debt crisis around 2011, the dot-com bubble burst at the beginning of the current 

millennia, or the Asian financial crisis around 1998. Also, the average excess returns earned by 

the best performing trading strategies and the null rejection rates of RC tests are lower in the 

first half of the sample, which generally corresponded to a period of more stable and rising 

markets. These results are consistent with existing evidence that find rising return predictability 
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when prices decline (e.g., Lim and Brooks, 2011) and seem to support the Adaptive Market 

Hypothesis of Lo (2004). They also hint that TTRs may have some merit as a risk management 

aid in timing exit points around the onset of a bear market. However, the results in Section 4 

show that data snooping bias rises when markets are more volatile. Thus, our tests cannot 

distinguish between true significant results and false discoveries, as the null rejection rates are 

comparable to the ones obtained using similar conditions in the simulation exercise (Table B3 

in the supplementary materials). Further, null rejection rates are very low from an economic 

perspective even in 2008, not exceeding 4.89% at the 10% level, 2.4% at the 5% level and 

1.16% at the 1% level. As a result, we argue that these results rather support the Efficient Market 

Hypothesis and reinforce the conclusion that TTRs lack economic relevance when used for 

trading on stock markets around the world. 

Table 6. Null Rejection Rates aggregated by stock market 

Market 

Number of 

tests using 

686k 

 Extended rule universe 

(686k) 

 Restricted rule universes  Restricted rule universes 

(aggregated by stock-year) 

 =0.10 =0.05 =0.01  =0.10 =0.05 =0.01  =0.10 =0.05 =0.01 

AE 295  0.34% 0.00% 0.00%  1.64% 0.56% 0.01%  7.79% 2.37% 0.33% 

AR 600  1.50% 0.17% 0.00%  2.10% 0.65% 0.00%  5.50% 3.00% 0.16% 

AT 301  0.00% 0.00% 0.00%  0.27% 0.06% 0.00%  3.32% 0.66% 0.33% 

AU 865  0.00% 0.00% 0.00%  0.08% 0.00% 0.00%  1.27% 0.23% 0.00% 

BA 75  9.33% 6.67% 5.33%  10.46% 7.74% 5.43%  16.00% 12.00% 8.00% 
BE 352  0.28% 0.00% 0.00%  0.85% 0.47% 0.01%  2.27% 1.13% 0.56% 

BG 143  2.10% 0.70% 0.00%  4.96% 2.93% 0.15%  7.69% 6.29% 1.39% 

BH 260  3.85% 2.31% 0.38%  4.89% 2.62% 0.81%  12.30% 6.92% 1.92% 
BR 574  0.17% 0.17% 0.00%  0.34% 0.19% 0.00%  1.56% 0.52% 0.00% 

BRVM 120  0.83% 0.00% 0.00%  0.45% 0.01% 0.00%  3.33% 0.83% 0.00% 

CA 1060  0.00% 0.00% 0.00%  0.02% 0.00% 0.00%  0.75% 0.00% 0.00% 
CH 342  0.00% 0.00% 0.00%  0.01% 0.00% 0.00%  0.29% 0.00% 0.00% 

CL 532  1.13% 0.75% 0.00%  2.16% 0.85% 0.29%  7.14% 3.00% 0.93% 

CN 349  0.00% 0.00% 0.00%  0.52% 0.08% 0.00%  6.01% 2.29% 0.00% 
CO 168  1.19% 0.00% 0.00%  0.96% 0.64% 0.00%  2.38% 1.19% 0.00% 

CY 222  0.00% 0.00% 0.00%  3.53% 0.92% 0.04%  11.26% 4.95% 0.00% 

CZ 136  0.00% 0.00% 0.00%  0.18% 0.06% 0.01%  0.73% 0.00% 0.00% 
DE 662  0.00% 0.00% 0.00%  0.04% 0.01% 0.00%  0.90% 0.30% 0.00% 

DK 419  0.00% 0.00% 0.00%  0.19% 0.02% 0.00%  2.62% 0.71% 0.00% 

EE 154  2.60% 1.95% 0.00%  4.06% 2.72% 0.42%  6.49% 4.54% 1.94% 
EG 325  2.77% 1.54% 0.00%  3.99% 1.79% 0.17%  12.92% 5.53% 0.61% 

ES 578  0.00% 0.00% 0.00%  0.15% 0.03% 0.00%  2.59% 0.86% 0.00% 

FI 436  0.23% 0.00% 0.00%  0.39% 0.05% 0.00%  2.98% 1.60% 0.00% 
FR 926  0.11% 0.00% 0.00%  0.20% 0.09% 0.00%  1.29% 0.43% 0.10% 

GR 624  1.12% 0.00% 0.00%  2.06% 0.78% 0.03%  8.17% 3.04% 0.16% 

HK 758  0.00% 0.00% 0.00%  0.22% 0.02% 0.00%  0.65% 0.52% 0.00% 
HR 214  0.47% 0.00% 0.00%  2.12% 0.75% 0.07%  7.94% 3.73% 0.00% 

HU 183  0.00% 0.00% 0.00%  0.44% 0.11% 0.00%  2.73% 0.54% 0.00% 

ID 567  0.71% 0.35% 0.00%  1.08% 0.56% 0.02%  3.35% 1.05% 0.35% 
IE 412  0.73% 0.49% 0.00%  1.95% 0.94% 0.04%  5.58% 2.91% 0.48% 

IL 664  0.30% 0.00% 0.00%  1.14% 0.27% 0.00%  3.61% 1.50% 0.00% 
IN 470  0.00% 0.00% 0.00%  0.08% 0.00% 0.00%  1.70% 0.42% 0.00% 

IQ 153  2.61% 0.00% 0.00%  2.80% 1.27% 0.00%  7.84% 3.92% 0.00% 

IS 59  1.69% 1.69% 0.00%  1.57% 1.27% 0.00%  3.38% 3.38% 0.00% 
IT 566  0.00% 0.00% 0.00%  0.21% 0.03% 0.00%  3.71% 1.23% 0.00% 

JO 487  0.21% 0.00% 0.00%  1.32% 0.22% 0.00%  5.95% 1.64% 0.20% 

JP 981  0.00% 0.00% 0.00%  0.07% 0.00% 0.00%  1.01% 0.20% 0.00% 
KE 560  0.00% 0.00% 0.00%  0.75% 0.10% 0.00%  6.78% 2.14% 0.00% 
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KR 705  0.00% 0.00% 0.00%  0.02% 0.00% 0.00%  0.85% 0.14% 0.00% 

KW 572  0.17% 0.00% 0.00%  1.52% 0.31% 0.00%  5.41% 2.62% 0.17% 

KZ 45  4.44% 2.22% 2.22%  4.74% 2.52% 1.91%  11.11% 8.88% 2.22% 

LB 115  0.00% 0.00% 0.00%  1.87% 0.98% 0.11%  6.95% 4.34% 2.60% 
LK 609  1.64% 0.82% 0.00%  2.36% 1.29% 0.17%  6.23% 3.77% 0.98% 

LT 257  3.11% 2.33% 0.00%  4.16% 2.50% 0.60%  8.17% 4.66% 1.55% 

LV 182  3.85% 2.75% 1.10%  4.08% 3.12% 1.36%  6.04% 4.39% 2.74% 
MA 400  0.50% 0.25% 0.25%  1.34% 0.61% 0.18%  4.00% 2.25% 0.50% 

MU 147  0.68% 0.00% 0.00%  2.21% 0.54% 0.00%  10.20% 2.72% 0.00% 

MX 485  0.62% 0.21% 0.00%  0.93% 0.56% 0.00%  3.09% 1.44% 0.20% 
MY 963  0.52% 0.00% 0.00%  0.83% 0.32% 0.00%  3.32% 1.34% 0.20% 

NA 193  1.04% 0.00% 0.00%  0.83% 0.29% 0.00%  4.14% 2.59% 1.55% 

NG 217  2.30% 0.00% 0.00%  2.11% 0.47% 0.00%  5.99% 2.76% 0.00% 
NL 833  0.84% 0.12% 0.00%  1.00% 0.52% 0.09%  2.52% 1.44% 0.36% 

NO 622  0.32% 0.16% 0.00%  0.65% 0.12% 0.00%  3.37% 1.28% 0.00% 

NZ 547  1.10% 0.73% 0.00%  1.32% 0.89% 0.12%  3.10% 1.64% 0.91% 
OM 381  3.15% 1.84% 0.00%  3.85% 1.95% 0.11%  10.49% 5.24% 0.78% 

PE 492  3.05% 1.42% 0.41%  4.44% 1.83% 0.43%  10.56% 5.28% 0.81% 

PH 505  0.79% 0.40% 0.00%  1.75% 0.62% 0.07%  5.34% 2.57% 0.19% 
PK 538  0.56% 0.19% 0.00%  1.97% 0.60% 0.02%  5.94% 2.60% 0.18% 

PL 364  0.55% 0.27% 0.00%  0.55% 0.37% 0.01%  1.64% 0.54% 0.27% 

PT 545  0.37% 0.00% 0.00%  2.09% 0.66% 0.00%  8.44% 4.22% 0.00% 
QA 407  0.25% 0.00% 0.00%  0.64% 0.25% 0.01%  2.94% 0.98% 0.24% 

RO 458  1.53% 0.87% 0.00%  2.93% 1.50% 0.15%  6.11% 3.93% 1.09% 

RS 102  1.96% 0.00% 0.00%  5.35% 1.50% 0.04%  13.72% 7.84% 0.00% 
RU 149  3.33% 2.67% 0.00%  4.24% 2.34% 0.12%  8.72% 5.36% 1.34% 

SA 415  0.00% 0.00% 0.00%  0.44% 0.12% 0.00%  3.37% 2.16% 0.00% 

SE 666  0.00% 0.00% 0.00%  0.26% 0.07% 0.00%  1.95% 0.30% 0.00% 
SG 686  0.15% 0.00% 0.00%  0.53% 0.19% 0.01%  2.18% 0.87% 0.14% 

SI 82  2.44% 1.22% 0.00%  5.70% 3.70% 1.24%  13.41% 9.75% 3.65% 

SK 72  0.00% 0.00% 0.00%  0.85% 0.00% 0.00%  4.16% 0.00% 0.00% 
TH 701  0.71% 0.29% 0.14%  1.36% 0.58% 0.14%  5.13% 2.28% 0.28% 

TN 313  0.00% 0.00% 0.00%  0.30% 0.00% 0.00%  2.55% 0.31% 0.00% 

TR 636  0.31% 0.00% 0.00%  0.42% 0.14% 0.00%  1.41% 0.62% 0.00% 
TW 729  0.00% 0.00% 0.00%  0.18% 0.01% 0.00%  2.19% 0.54% 0.00% 

TZ 69  1.45% 0.00% 0.00%  3.22% 0.79% 0.09%  14.49% 5.79% 4.34% 

UA 153  7.19% 1.96% 0.00%  8.49% 3.59% 0.11%  26.79% 14.37% 1.30% 
UK 821  0.00% 0.00% 0.00%  0.01% 0.00% 0.00%  0.48% 0.00% 0.00% 

US 1072  0.00% 0.00% 0.00%  0.04% 0.00% 0.00%  0.65% 0.18% 0.00% 

VE 138  0.00% 0.00% 0.00%  1.79% 1.18% 0.08%  2.89% 2.89% 1.44% 

VN 227  4.85% 3.52% 0.88%  6.89% 4.09% 1.31%  13.65% 8.81% 3.96% 

ZA 682  0.15% 0.00% 0.00%  0.06% 0.00% 0.00%  0.73% 0.14% 0.00% 

Minimum  0.00% 0.00% 0.00%  0.01% 0.00% 0.00%  0.29% 0.00% 0.00% 
Maximum  9.33% 6.67% 5.33%  10.46% 7.74% 5.43%  26.79% 14.37% 8.00% 

Median  0.42% 0.00% 0.00%  1.11% 0.50% 0.00%  3.86% 2.16% 0.15% 

Average  1.10% 0.51% 0.13%  1.83% 0.87% 0.20%  5.45% 2.77% 0.64% 
(Std. Deviation)  1.67% 1.07% 0.66%  2.05% 1.26% 0.68%  4.56% 2.83% 1.26% 

NOTE. The Null Rejection Rate (NRR) is the number of tests that reject the null hypothesis of no economic profitability at the  
level, expressed as a percentage of the total number of tests performed. 
 

The results aggregated by stock market are reported in Table 6. When analyzing the 

excess performance of TTRs in the 686k universe, they show that some asymmetries also exist 

between the different markets in our sample. At the 10% confidence level, no RC null rejections 

occur for 26 stock markets, which are mainly developed ones. On other hand, TTRs earn excess 

returns 9.33% of the time in Bosnia and Herzegovina, 7.19% of the time in Ukraine, 4.85% of 

the time in Vietnam, 4.44% of the time in Kazakhstan, and at rates between 1% and 4% in other 

50 (mainly developing) stock markets. As we lower the confidence level towards 1%, TTRs 

become unprofitable in all but 8 stock markets. At the intermediate 5% confidence level, TTRs 
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are profitable in 31 of the 80 markets, with success rates ranging between 0.12% and 2.75%; 

two outliers exist–Vietnam with 3.52% and Bosnia and Herzegovina with 6.67%. Overall, our 

findings agree with the literature showing that TTRs are not relevant in developed markets and 

are more informative and more profitable in smaller, less developed stock markets (countries). 

However, our analysis shows that previous results should be treated with care, as they may be 

impacted by data snooping bias do not necessarily imply that some markets are not efficient. 

First, given that volatility tends to be higher in emerging and frontier markets, TTRs are 

“luckier” and a higher rate of RC null rejections is expected. Second, the null rejection rates 

obtained in tests using 686k are mostly similar or lower compared to the ones obtained in the 

simulation exercise presented in Section 4, with the exception of only 8 markets, which are very 

small and have important trading barriers for investors; this increases the likelihood that any 

superior information gained from prediction models based on technical analysis may not be 

used in actual trading. Third, the rates of null rejections do not surpass 10% even in these 

markets and are generally low from an economic perspective. Because of this, we argue that 

these results are explained by both the Efficient Market Hypothesis and the data snooping bias 

arising in tests of the relative performance of multiple prediction models from using small, 

unrepresentative rule universes. Our conclusion thus departs from views in the literature that 

support the excess performance of TTRs even in small, less developed markets. 

Comparing the tests conducted using restricted rule universes to the ones that use the 

benchmark shows that data snooping is the factor that causes this disagreement. Specifically, 

RC tests that use the 686k universe reject the null hypothesis less often for all markets in the 

sample, and the excess performance of TTRs is significantly inflated in some markets. For 

example, positive discoveries for Bahrain increase 2.13 times at the 1% level in tests that use 

the restricted rule universes, compared to the ones that use 686k. Similarly, positive discoveries 

for The Netherlands increase 4.33 times at the 5% level, while positive discoveries for Kuwait 
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increase 8.94 times at the 10% level. In the extreme, but not entirely unrealistic scenario in 

which researchers conduct independent tests using unrepresentative universes and then draw 

conclusions based on a meta-analysis of the reported results, positive discoveries for Bahrain 

increase 5.05 times at the 1% level, positive discoveries for Argentina increase 17.65 times at 

the 5% level, while positive discoveries for Kuwait increase 31.82 times at the 10% level. 

Overall, the results show that data snooping is an important factor that influences the results of 

RC tests and skews conclusions in favor of incorrectly supporting TTR excess performance in 

restricted data samples. 

5.3.Robustness analysis 

In this section, we evaluate the robustness of the results reported in Sections 5.1 and 5.2 

to changes in the testing methodology. Particularly, data snooping bias is reevaluated using the 

SPA test of Hansen (2005). The rate of null rejections is computed and compared for tests that 

use the benchmark 686k rule universe and tests that use 43 smaller, unrepresentative universes 

(the same as before are used, except that the universes generated by the Filter and Runs 

indicators are merged). For this exercise, only data from 18 emerging stock markets in Central 

and Eastern Europe (listed in Table 7, Panel C) is considered, because the results in Section 5.2 

show that this is where RC test null rejections predominantly occur. A total of 4,208 tests are 

performed using the benchmark rule universe and 180,944 tests using the 43 alternatives. 

Table 7. Null rejection rates and data snooping bias in SPA tests 
Panel A: NRR aggregated by rule universe  Panel B: NRR aggregated by year 

 686k  Restricted rule universes 

Rule universe =0.1 =0.05 =0.01  Year =0.1 =0.05 =0.01  Year =0.1 =0.05 =0.01 

%b 3.35% 1.64% 0.38%  1991 0.00% 0.00% 0.00%  1991 3.15% 3.15% 1.37% 
%k 2.99% 1.52% 0.38%  1992 0.00% 0.00% 0.00%  1992 1.95% 1.67% 0.37% 

AO 3.49% 1.64% 0.36%  1993 0.00% 0.00% 0.00%  1993 13.24% 12.34% 9.48% 

ASI 23.08% 21.22% 11.86%  1994 2.70% 0.00% 0.00%  1994 4.90% 4.53% 2.14% 
BMP 3.49% 2.21% 1.00%  1995 0.00% 0.00% 0.00%  1995 3.98% 3.67% 2.28% 

CCI 4.25% 2.28% 0.57%  1996 0.00% 0.00% 0.00%  1996 8.34% 6.58% 3.51% 

CMF 2.85% 1.66% 0.76%  1997 0.00% 0.00% 0.00%  1997 5.59% 5.41% 3.61% 
CMO 2.88% 1.45% 0.36%  1998 0.00% 0.00% 0.00%  1998 5.13% 3.62% 1.47% 

CO 2.50% 1.50% 0.76%  1999 0.00% 0.00% 0.00%  1999 7.35% 6.98% 4.67% 

COG 6.63% 5.30% 1.21%  2000 1.41% 0.70% 0.70%  2000 5.26% 3.32% 1.72% 
DI 3.54% 2.00% 0.48%  2001 1.84% 0.61% 0.00%  2001 3.65% 2.74% 1.46% 

DMI 2.26% 1.07% 0.24%  2002 2.25% 0.56% 0.00%  2002 5.62% 3.78% 1.20% 

DPO 0.95% 0.48% 0.14%  2003 0.00% 0.00% 0.00%  2003 4.72% 4.45% 2.63% 
DYMOI 2.14% 0.97% 0.21%  2004 0.00% 0.00% 0.00%  2004 6.14% 5.80% 3.87% 

EMV 19.77% 18.23% 9.91%  2005 0.41% 0.00% 0.00%  2005 5.74% 5.29% 3.38% 

F 5.44% 3.49% 0.88%  2006 0.00% 0.00% 0.00%  2006 5.15% 4.67% 2.77% 
INI 2.66% 1.40% 0.45%  2007 0.66% 0.33% 0.33%  2007 5.72% 5.32% 3.27% 
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KCD 1.28% 0.55% 0.12%  2008 7.59% 4.11% 0.32%  2008 20.54% 10.93% 2.66% 

KPO 1.73% 0.67% 0.14%  2009 0.00% 0.00% 0.00%  2009 4.40% 4.14% 2.52% 

KST 1.52% 0.67% 0.12%  2010 0.00% 0.00% 0.00%  2010 4.32% 4.02% 2.48% 

KVO 4.56% 2.54% 0.45%  2011 1.13% 0.00% 0.00%  2011 4.61% 2.71% 1.14% 
LRS 2.57% 1.05% 0.21%  2012 0.00% 0.00% 0.00%  2012 5.17% 4.50% 2.61% 

MACD 1.05% 0.40% 0.05%  2013 0.00% 0.00% 0.00%  2013 3.96% 3.60% 1.95% 

MFI 3.07% 1.45% 0.33%  Min 0.00% 0.00% 0.00%  Min 1.95% 1.67% 0.37% 

MVI 4.06% 2.76% 0.67%  Max 7.59% 4.11% 0.70%  Max 20.54% 12.34% 9.48% 
NRVI 2.92% 1.52% 0.31%  Median 0.00% 0.00% 0.00%  Median 5.15% 4.45% 2.52% 

OBV 43.96% 43.13% 31.44%  Average 0.78% 0.27% 0.06%  Average 6.03% 4.92% 2.72% 

PFE 3.16% 1.45% 0.33%  St.Dev. 1.70% 0.87% 0.17%  St.Dev. 3.83% 2.47% 1.79% 

PI 2.73% 1.28% 0.29%           

Qstick 22.24% 21.06% 11.64%  Panel C: NRR aggregated by stock market 

RMI 4.33% 2.26% 0.45%  Extended rule universe (686k)  Restricted rule universes 

ROC 1.90% 0.88% 0.19%  Country =0.1 =0.05 =0.01  Country =0.1 =0.05 =0.01 

RSI 3.42% 1.64% 0.48%  BA 9.33% 5.33% 0.00%  BA 13.95% 10.45% 6.48% 

RVI 2.71% 1.31% 0.33%  BG 1.40% 0.70% 0.00%  BG 7.63% 4.91% 2.18% 

RVig 3.26% 1.78% 0.88%  CY 1.80% 0.45% 0.00%  CY 4.92% 2.67% 1.04% 
RWI 5.58% 4.61% 2.14%  CZ 0.00% 0.00% 0.00%  CZ 5.35% 4.79% 2.77% 

SMI 3.33% 1.50% 0.29%  EE 1.30% 1.30% 0.00%  EE 5.68% 4.20% 1.43% 

SRSI 4.23% 2.19% 0.40%  GR 0.80% 0.32% 0.00%  GR 6.28% 4.99% 2.66% 
TRIX 3.11% 1.45% 0.21%  HR 0.47% 0.00% 0.00%  HR 5.17% 3.61% 1.66% 

TSI 3.64% 2.04% 0.38%  HU 1.09% 0.00% 0.00%  HU 6.40% 5.71% 3.43% 

UO 2.57% 1.43% 0.36%  LT 1.56% 0.39% 0.00%  LT 5.86% 4.04% 1.49% 
VX 2.61% 1.33% 0.40%  LV 2.75% 1.10% 1.10%  LV 5.67% 4.36% 1.97% 

WVAD 40.54% 39.42% 26.19%  PL 0.27% 0.00% 0.00%  PL 6.54% 6.06% 3.60% 

Min 0.95% 0.40% 0.05%  RO 0.22% 0.22% 0.00%  RO 5.09% 3.53% 1.51% 
Max 43.96% 43.13% 31.44%  RS 0.00% 0.00% 0.00%  RS 6.36% 3.28% 1.44% 

Median 3.16% 1.52% 0.38%  RU 0.66% 0.66% 0.66%  RU 5.62% 4.14% 2.08% 

Average 6.24% 4.85% 2.53%  SI 3.66% 1.22% 0.00%  SI 11.17% 9.36% 4.23% 
St.Dev. 9.44% 9.49% 6.52%  SK 0.00% 0.00% 0.00%  SK 2.07% 1.65% 0.90% 

Benchmark– 
686k 

0.97% 0.40% 0.07% 

 TR 0.00% 0.00% 0.00%  TR 6.80% 6.34% 4.12% 

 UA 1.96% 0.65% 0.00%  UA 7.14% 3.62% 0.87% 

 Min 0.00% 0.00% 0.00%  Min 2.07% 1.65% 0.87% 

     Max 9.33% 5.33% 1.10%  Max 13.95% 10.45% 6.48% 

     Median 0.95% 0.35% 0.00%  Median 6.07% 4.28% 2.02% 
     Average 1.52% 0.69% 0.10%  Average 6.54% 4.87% 2.44% 

     St.Dev. 2.20% 1.24% 0.29%  St.Dev. 2.53% 2.17% 1.46% 

NOTE. The Null Rejection Rate (NRR) is the number of tests that reject the null hypothesis of no economic profitability at the  
level, expressed as a percentage of the total number of tests performed. 

Table 7 reports the results, which show that data snooping bias has an even more 

significant impact on tests that use the SPA methodology. Particularly, compared to tests that 

use the benchmark 686k rule universe, null rejection rates for unrepresentative universes occur 

on average (median) 6.4 to 35.4 (3.2 to 5.3) times more often, depending on the selected 

confidence level. When aggregating the data by year and by stock market, the relative 

differences in null rejection rates are similar. Moreover, many years and markets exist for which 

tests that use unrepresentative rule universes reject the null hypothesis, while tests that use the 

benchmark do not. Overall, the results support earlier conclusions regarding the influence of 

data snooping bias on tests that analyze the relative performance of multiple forecasting models. 

In particular, they show that the excess performance of TTRs is also overstated when using 

small, unrepresentative universes in the SPA test. 
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Even though the SPA test is more powerful and rejects the null of no economic 

profitability more often in this sample compared to the RC test, analyzing the excess 

performance of TTRs in this context yields that null rejection rates remain scarce in tests 

employing the 686k universe. Particularly, only 41 tests (0.97%) reject the null at the 10% 

confidence level, 17 tests (0.40%) reject the null at the 5% confidence level, and 3 tests (0.07%) 

reject the null at the 1% confidence level. Because these results are obtained for some of the 

smallest stock markets in the entire sample, they provide additional support for the Efficient 

Market Hypothesis and earlier conclusion that TTRs are not relevant from an economic 

perspective when used by investors for trading in stock markets around the world. 

6. Conclusions 

This paper performs a novel investigation into how choosing small sets of prediction 

models, which do not account for what investors and researchers use, introduces data snooping 

bias in statistical tests that examine their relative performance. The paper focuses on the Reality 

Check (RC) test of White (2000) and on the literature concerned with the excess performance 

of models derived from technical analysis, technical trading rules (TTRs). Our analysis shows 

that the effective span of rule universes is positively correlated with their size. Even though 

trading rules universes employed in the literature are becoming larger, they do not typically 

account for the data snooping efforts of others and are yet to get near to the size of the “true” 

universe that can be safely presumed to be used by investors and researchers. This hypothetical 

construction is unobservable, but should easily contain millions of prediction models.  

In a simulation exercise conducted on randomly generated data, we find that using small, 

unrepresentative rule universes increases false discoveries and biases the outcomes of RC-type 

tests in favor of showing that some forecasting models have superior predictive ability. TTRs 

are “luckier” and data snooping bias is stronger when the size or diversity of the rule universe 

are restricted, when the volatility of the underlying data generating process increases, or when 
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the length of the data sample increases. In an empirical exercise that uses a more representative 

rule universe of 686,304 models as a benchmark, we find that 44 smaller, unrepresentative 

universes–comparable in size and information span to the ones that are typically employed in 

the literature–overestimate the economic relevance of TTRs by 1.8-2 times on average, 

depending on the data sample, the characteristics of the trading rule universe, or the test 

significance level. In the extreme, but not entirely unrealistic case in which independent 

researchers perform tests using unrepresentative rule universes and then draw conclusions 

based on a meta-analysis of their results, the excess performance of TTRs can be inflated by 

6.16-7.93 times on average, and even by as much as 32 times. 

Our findings have several important implications. First, they contribute to the recent 

debate that highlights the need to thoroughly investigate and mitigate data snooping, as a way 

to increase the relevance and reliability of published results. In particular, we argue that 

previous findings showing TTRs to be relevant from an economic perspective in some financial 

markets should be treated with more care. Trading rules can appear relevant in our tests that 

use random data and their “luckiness” increases in some setups (e.g., higher market volatility, 

longer data samples). As a consequence, existing evidence should be reexamined using tests 

that control for the data snooping efforts of others. New tests should also consider and control 

for this problem. In our own reevaluation of the economic relevance of TTRs, we find no 

significant evidence to support that they are able to earn excess returns when used for trading 

in stock markets around the world, after subtracting transaction costs and adjusting for data 

snooping bias using a more representative 686,304 prediction model universe. This finding is 

robust to the choice regarding the test significance level, the way the data is aggregated or 

analyzed, and the selected testing methodology. Thus, relative to a broad set of technical trading 

rules, prices in stock markets around the world incorporate information efficiently. From a 

theoretical perspective, this supports the weak-form Efficient Market Hypothesis of Fama 
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(1970), as opposed to the Adaptive Market Hypothesis of Lo (2004) that has recently gained 

importance (Lim and Brooks, 2011). From a practical perspective, the findings show that 

technical trading rules have limited use for making investment decisions, at least when they are 

used independently from other forecasting methods. Investors seeking to use technical analysis 

should be better off with passively managing their portfolios. 

Second and more generally, our results imply that data snooping bias occurs and is 

significant in statistical tests that evaluate the relative performance of multiple forecasting 

models without accounting for relevant alternatives. Moreover, when all relevant alternatives 

are not observable, tests are impacted by ambiguity risk, testing for relative performance 

becomes problematic, and results should be treated with more care. Testing for absolute 

performance avoids this problem and provides more objective results, but evaluating relative 

performance remains necessary to answer some important scientific questions. This implies the 

need to develop new testing methodologies that control for the subjective choice regarding the 

set of alternatives that are used in tests that evaluate their relative performance. 
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